Penerapan Algoritma XGBoost Untuk Prediksi Kepuasan Pelanggan Pada Layanan E-Commerce: Studi Pada Dataset Transaksi Nyata
DOI:
https://doi.org/10.64476/jtbc.v1i1.5Kata Kunci:
Kepuasan Pelanggan, E-Commerce, Machine Learning, XGBoost, PrediksiAbstrak
Pertumbuhan e-commerce di Indonesia yang pesat memunculkan tantangan baru bagi penyedia layanan untuk menjaga kepuasan pelanggan di tengah kompetisi yang semakin ketat. Penelitian ini bertujuan untuk mengembangkan model prediktif berbasis Extreme Gradient Boosting (XGBoost) dalam memprediksi kepuasan pelanggan e-commerce dengan memanfaatkan dataset nyata berskala besar. Dataset yang digunakan berasal dari Kaggle (E-Commerce Customer Satisfaction) yang mencakup lebih dari 100.000 transaksi dengan atribut seperti harga, biaya pengiriman, waktu pengiriman, serta ulasan pelanggan. Data diproses melalui tahapan pembersihan, encoding, normalisasi, dan feature engineering. Model XGBoost dibandingkan dengan Random Forest dan Logistic Regression untuk mengevaluasi performa prediksi. Hasil eksperimen menunjukkan bahwa XGBoost mencapai akurasi 92,4%, F1-score 90,6%, dan ROC-AUC 0,941, mengungguli kedua model pembanding. Analisis feature importance dan SHAP mengidentifikasi bahwa review score, freight value, dan delivery delay merupakan faktor dominan yang mempengaruhi kepuasan pelanggan. Temuan ini memiliki implikasi praktis bagi pelaku e-commerce untuk mengoptimalkan strategi logistik dan layanan pasca-pembelian dalam meningkatkan pengalaman pelanggan. Penelitian ini juga menekankan pentingnya pemanfaatan machine learning dalam pemantauan kepuasan secara real-time dan memberikan kontribusi bagi literatur ilmu data di bidang e-commerce Indonesia.
Unduhan
Referensi
Abdullah-All-Tanvir, Ali Khandokar, I., Muzahidul Islam, A. K. M., Islam, S., & Shatabda, S. (2023). A gradient boosting classifier for purchase intention prediction of online shoppers. Heliyon, 9(4), e15163. https://doi.org/10.1016/j.heliyon.2023.e15163
Andy Hermawan, Aji Saputra, Muhammad Dhika Rafi, Syafiq Basmallah, Yilmaz Trigumari Syah Putra, & Wafa Nabila. (2025). Implementing XGBoost Model for Predicting Customer Churn in E-Commerce Platforms. Repeater : Publikasi Teknik Informatika Dan Jaringan, 3(2), 17–31. https://doi.org/10.62951/repeater.v3i2.401
Cai, K., & Rodavia, M. R. (2023). XGBoost Analysis based on Consumer Behavior. Frontiers in Computing and Intelligent Systems, 5(2), 85–89. https://doi.org/10.54097/fcis.v5i2.12974
Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Gregory, B. (2018). Predicting Customer Churn: Extreme Gradient Boosting with Temporal Data. https://arxiv.org/abs/1802.03396
Guan, G., Liu, D., & Zhai, J. (2022). Factors Influencing Consumer Satisfaction of Fresh Produce E-Commerce in the Background of COVID-19—A Hybrid Approach Based on LDA-SEM-XGBoost. Sustainability, 14(24), 16392. https://doi.org/10.3390/su142416392
Le, H.-S., Do, T.-V. H., Nguyen, M. H., Tran, H.-A., Pham, T.-T. T., Nguyen, N. T., & Nguyen, V.-H. (2024). Predictive model for customer satisfaction analytics in E-commerce sector using machine learning and deep learning. International Journal of Information Management Data Insights, 4(2), 100295. https://doi.org/10.1016/j.jjimei.2024.100295
Lundberg, S. M. , & Lee, S. I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
Maylinda, W. D., & Andarini, S. (2024). Pengaruh Customer Experience Dan Personalisasi Artificial Intelligence (AI) Terhadap Loyalitas Konsumen E-Commerce Shopee Di Surabaya. Journal of Economic, Bussines and Accounting (COSTING), 7(3), 6039–6048. https://doi.org/10.31539/costing.v7i3.9569
Nico, H., La, M., Mustika, J., Ruth, J., & Z., H. (2022). Factors Affecting Online Purchase Decision, Customer Satisfaction, and Brand Loyalty: An Empirical Study from Indonesia’s Biggest E-Commerce. The Journal of Distribution Science, 20(11). https://doi.org/https://doi.org/10.15722/jds.20.11.202211.33
Olist. (2018). Brazilian E-Commerce Public Dataset by Olist. Olist. https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
Pahlevi, R. (2022). Nilai Transaksi E-Commerce Indonesia Diperkirakan Capai US$137,5 Miliar pada 2025. https://databoks.katadata.co.id/teknologi-telekomunikasi/statistik/578053fb8bceef8/nilai-transaksi-e-commerce-indonesia-diperkirakan-capai-us1375-miliar-pada-2025
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
Sondakh, D. E., Taju, S., Regina Patricia, & Tumbal, R. (2024). Sentiment Analysis of Customer Satisfaction of Shopee Service Quality. 11th International Scholars Conference, 11(5), 1463–1472. https://doi.org/10.35974/isc.v11i5.3574
Song, P., & Liu, Y. (2020). An XGBoost Algorithm for Predicting Purchasing Behaviour on E-Commerce Platforms. Tehnicki Vjesnik - Technical Gazette, 27(5). https://doi.org/10.17559/TV-20200808113807
Suastiari, N. K. S., & Mahyuni, L. P. (2022). DETERMINANTS OF E-COMMERCE USER SATISFACTION: THE MEDIATING ROLE OF PURCHASE INTENTION. Jurnal Ekonomi Bisnis Dan Kewirausahaan, 11(3), 345. https://doi.org/10.26418/jebik.v11i3.56329
Wang, M., Liu, Y., Li, G., Payne, T. R., Yue, Y., & Man, K. L. (2024). Unlocking Your Sales Insights: Advanced XGBoost Forecasting Models for Amazon Products. https://arxiv.org/abs/2411.00460
Wilson, N., & Christella, R. (2019). An Empirical Research of Factors Affecting Customer Satisfaction: A Case of the Indonesian E-Commerce Industry. DeReMa (Development Research of Management): Jurnal Manajemen, 14(1), 21. https://doi.org/10.19166/derema.v14i1.1108
Zhang, J. (2025). Enhancing Predictive Models in E-Commerce: A Comparative Study Using XGBoost Across Diverse Scenarios. ITM Web of Conferences, 70, 02014. https://doi.org/10.1051/itmconf/20257002014
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Dhimas Tribuana, Baharuddin Baharuddin, Andi Muhammad Resky

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Artikel ini diterbitkan di bawah Lisensi Creative Commons Attribution 4.0 International (CC BY 4.0).
Anda bebas menggunakan, membagikan, dan mengadaptasi karya ini selama mencantumkan atribusi yang sesuai kepada penulis dan sumber asli publikasi.
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/