Membangun Taxonomy Riset Big Data Analytics dan Business Intelligence: Systematic Literature Review dalam Konteks Manajemen Informatika

Penulis

  • Dhimas Tribuana Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.
  • Andi Dewi Haryanti Agustan Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.
  • Hidayat Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.
  • Endang Halimah Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.
  • Koas Dianah Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.
  • Isiswanty Akademi Sekretari Manajemen Indonesia Publik, Makassar, Indonesia.

DOI:

https://doi.org/10.64476/jtbc.v1i2.12

Kata Kunci:

Business Intelligence, Big Data Analytics, Data Governance, Real-Time Processing, Artificial Intelligence, Generative AI, Taxonomy

Abstrak

Transformasi digital telah mendorong peran Business Intelligence (BI) berkembang dari sekadar sistem pelaporan menjadi platform strategis berbasis data. Penelitian ini bertujuan untuk memetakan state of the art BI melalui pendekatan Systematic Literature Review (SLR) dengan kerangka PRISMA 2020. Sebanyak 50 artikel ilmiah dari tahun 2010-2025 dikaji secara mendalam, dengan sumber dari basis data akademik terbuka dan standar (Scopus, Web of Science, Google Scholar, Semantic Scholar, dan DOAJ). Analisis menghasilkan sebuah taxonomy yang membagi literatur ke dalam lima domain utama: BI Foundations, Big Data Analytics, Data Governance & Quality, Real-Time & Stream Processing, dan BI-AI Integration. Hasil penelitian menunjukkan bahwa perkembangan BI mengikuti pola evolusi bertahap, mulai dari penguatan fondasi konseptual, pengembangan kapabilitas analitik, penguatan tata kelola data, akselerasi pemrosesan real-time, hingga integrasi dengan Artificial Intelligence (AI) dan Generative AI (GenAI). Studi ini memiliki implikasi teoretis berupa kontribusi terhadap kerangka konseptual riset BI, implikasi praktis berupa panduan strategi adopsi teknologi BI-AI di organisasi, serta implikasi kebijakan berupa kebutuhan regulasi adaptif dalam tata kelola data dan etika AI. Keterbatasan penelitian ini mencakup keterbatasan periode literatur dan dominasi artikel akademik. Penelitian mendatang disarankan mengintegrasikan grey literature dan studi kasus empiris untuk memperluas relevansi praktis.

Unduhan

Data unduhan belum tersedia.

Referensi

Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052

Adimi, A., Ghilan, M. M., & Yousef, W. (2024). Business Intelligence Systems Adoption: A Systematic Literature Review. Sana’a University Journal of Applied Sciences and Technology, 2(6), 527–537. https://doi.org/10.59628/jast.v2i6.1242

Akter, S., Bandara, R., Hani, U., Fosso Wamba, S., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. https://doi.org/10.1016/j.ijinfomgt.2019.01.020

Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018

Al Ahmary, H. (2025). Integrating to Mitigate BI Adoption Barriers in SMEs: A Systematic Literature Review. AMCIS 2025 Proceedings. https://aisel.aisnet.org/amcis2025/sigadit/sigadit/30

Alghamdi, K. (2025). A Systematic Literature Review of Business Intelligence Theories and Frameworks. Journal of Information Systems Engineering and Management, 10(45s), 1077–1093. https://doi.org/10.52783/jisem.v10i45s.9136

Al-Momani, M. M., Alqudah, T. A., Al Swiety, I. A., Mahrakani, N., Nassoura, M. B. A., & Al Attar, M. K. (2025). Integrating Artificial Intelligence (AI) and Business Intelligence (BI): A Framework for Improving Enterprise Performance. TEM Journal. https://doi.org/10.18421/TEM143-26

Alpar, P., & Schulz, M. (2016). Self-Service Business Intelligence. Business & Information Systems Engineering, 58(2), 151–155. https://doi.org/10.1007/s12599-016-0424-6

Batini, C., & Scannapieco, M. (2016). Data and Information Quality. Springer International Publishing. https://doi.org/10.1007/978-3-319-24106-7

Belani, G. (2025). Big Data and Predictive Analytics: A Systematic Review of Applications. IEEE Computer Society. https://www.computer.org/publications/tech-news/research/big-data-predictive-analytics-review

Božič, K., & Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), 101578. https://doi.org/10.1016/j.jsis.2019.101578

Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002

Chatterjee, S., Chaudhuri, R., Gupta, S., Sivarajah, U., & Bag, S. (2023). Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm. Technological Forecasting and Social Change, 196, 122824. https://doi.org/10.1016/j.techfore.2023.122824

Chen, Chiang, & Storey. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165. https://doi.org/10.2307/41703503

da Costa, T. P., da Costa, D. M. B., & Murphy, F. (2024). A systematic review of real-time data monitoring and its potential application to support dynamic life cycle inventories. Environmental Impact Assessment Review, 105, 107416. https://doi.org/10.1016/j.eiar.2024.107416

Demirezen, M. U., & Navruz, T. S. (2023). Performance Analysis of Lambda Architecture-Based Big-Data Systems on Air/Ground Surveillance Application with ADS-B Data. Sensors, 23(17), 7580. https://doi.org/10.3390/s23177580

Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning. https://arxiv.org/abs/1702.08608

Duong, V. (2024). Big Data Analytics and Business Intelligence in Business Marketing: A Review. International Journal of Information Technology and Computer Science Applications, 2(3), 139–146. https://doi.org/10.58776/ijitcsa.v2i3.162

Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168

Ehrlinger, L., Rusz, E., & Wöß, W. (2019). A Survey of Data Quality Measurement and Monitoring Tools. https://arxiv.org/abs/1907.08138

Even, A., Shankaranarayanan, G., & Berger, P. D. (2010). Evaluating a model for cost-effective data quality management in a real-world CRM setting. Decision Support Systems, 50(1), 152–163. https://doi.org/10.1016/j.dss.2010.07.011

Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management Decision, 57(8), 1923–1936. https://doi.org/10.1108/MD-07-2018-0825

Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos, A. (2024). A survey on the evolution of stream processing systems. The VLDB Journal, 33(2), 507–541. https://doi.org/10.1007/s00778-023-00819-8

Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006

Giebler, C., Stach, C., Schwarz, H., & Mitschang, B. (2018). BRAID - A Hybrid Processing Architecture for Big Data. Proceedings of the 7th International Conference on Data Science, Technology and Applications, 294–301. https://doi.org/10.5220/0006861802940301

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys, 51(5), 1–42. https://doi.org/10.1145/3236009

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004

Huynh, M.-T., Nippa, M., & Aichner, T. (2023). Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research. Technological Forecasting and Social Change, 197, 122884. https://doi.org/10.1016/j.techfore.2023.122884

Ibrahimy, S. M., & Ibrahimy, A. I. (2023). The Impact of Big Data Analytics on Business Intelligence in E-Commerce: A Review. Asian Journal of Electrical and Electronic Engineering, 3(2), 45–48. https://doi.org/10.69955/ajoeee.2023.v3i2.54

Işık, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information & Management, 50(1), 13–23. https://doi.org/10.1016/j.im.2012.12.001

Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134

Kurat, J. (2024). Integrating Business Intelligence with Generative AI: Paving the Way for Ethical Decision-Making Solutions. https://doi.org/10.13140/RG.2.2.18018.44488

Lamba, K., Singh, S. P., & Mishra, N. (2019). Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in Big Data environment. Computers & Industrial Engineering, 128, 1052–1062. https://doi.org/10.1016/j.cie.2018.04.028

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010). Big data, analytics and the path from insights to value. MIT Sloan Management Review. https://sloanreview.mit.edu/article/big-data-analytics-and-the-path-from-insights-to-value/

Liao, S.-H., Widowati, R., & Chang, H.-Y. (2021). A Data Mining Approach for Developing Online Streaming Recommendations. Applied Artificial Intelligence, 35(15), 2204–2227. https://doi.org/10.1080/08839514.2021.1997211

Liu, R., Yue, P., Shangguan, B., Gong, J., Xiang, L., & Lu, B. (2024). RTGDC: a real-time ingestion and processing approach in geospatial data cube for digital twin of earth. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2365386

Lundberg, S., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. https://arxiv.org/abs/1705.07874

Luo, L., Zhou, L., & Song, P. X.-K. (2023). Real-Time Regression Analysis of Streaming Clustered Data With Possible Abnormal Data Batches. Journal of the American Statistical Association, 118(543), 2029–2044. https://doi.org/10.1080/01621459.2022.2026778

Malawani, L., Sanguinoa, R., & Tato Jiménez, J. L. (2025). A Systematic Literature Review on the Impact of Business Intelligence on Organization Agility. Administrative Sciences, 15(7), 250. https://doi.org/10.3390/admsci15070250

Mariani, M. M., & Borghi, M. (2022). Artificial intelligence in service industries: customers’ assessment of service production and resilient service operations. International Journal of Production Research, 62(15), 5400–5416. https://doi.org/10.1080/00207543.2022.2160027

Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004

Milinthapunya, W., Yamchuti, U., Nammakhunt, A., Shawarangkoon, C., Wannapiroon, P., & Nillsook, P. (2025). Business Intelligence Management with Artificial Intelligence for Prediction Information Technology Infrastructure in Higher Education. TEM Journal, 1378–1387. https://doi.org/10.18421/TEM142-38

Morabito, V. (2016). The Future of Digital Business Innovation. Springer International Publishing. https://doi.org/10.1007/978-3-319-26874-3

Naamane, Z. (2023). A SYSTEMATIC LITERATURE REVIEW: BENEFITS AND CHALLENGES OF CLOUD-BASED BIG DATA ANALYTICS. Issues In Information Systems, 24(11), 291–304. https://doi.org/10.48009/1_iis_2023_125

Nkamla Penka, J. B., Mahmoudi, S., & Debauche, O. (2021). A new Kappa Architecture for IoT Data Management in Smart Farming. Procedia Computer Science, 191, 17–24. https://doi.org/10.1016/j.procs.2021.07.006

Otto, B. (2012). How to design the master data architecture: Findings from a case study at Bosch. International Journal of Information Management, 32(4), 337–346. https://doi.org/10.1016/j.ijinfomgt.2011.11.018

Papadopoulos, T., Baltas, K. N., & Balta, M. E. (2020). The use of digital technologies by small and medium enterprises during COVID-19: Implications for theory and practice. International Journal of Information Management, 55, 102192. https://doi.org/10.1016/j.ijinfomgt.2020.102192

Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729–739. https://doi.org/10.1016/j.dss.2012.08.017

Raguseo, E. (2018). Big data technologies: An empirical investigation on their adoption, benefits and risks for companies. International Journal of Information Management, 38(1), 187–195. https://doi.org/10.1016/j.ijinfomgt.2017.07.008

Ravichandran, D., & Bick, M. (2025). Generative AI and Business Model Innovation in Banking. In ESCP Business School Research Paper. SSRN. https://doi.org/10.2139/ssrn.5185729

Salazar, A., & Kunc, M. (2025). The contribution of GenAI to business analytics. Journal of Business Analytics, 8(2), 79–92. https://doi.org/10.1080/2573234X.2024.2435835

Singh, N., Chaudhary, V., Singh, N., Soni, N., & Kapoor, A. (2024). Transforming Business with Generative AI: Research, Innovation, Market Deployment and Future Shifts in Business Models. https://arxiv.org/abs/2411.14437

Sivarajah, U., Kumar, S., Kumar, V., Chatterjee, S., & Li, J. (2024). A study on big data analytics and innovation: From technological and business cycle perspectives. Technological Forecasting and Social Change, 202, 123328. https://doi.org/10.1016/j.techfore.2024.123328

Sumah, J., Selsily, W. H., Tribuana, D., Maramis, L., Angreini, A., Resky, A. M., & Bulu, N. H. (2025). Cloud Computing. Serasi Media Teknologi. https://books.google.co.id/books?id=Hb9mEQAAQBAJ

Taleb, I., Serhani, M. A., & Dssouli, R. (2018). Big Data Quality: A Survey. 2018 IEEE International Congress on Big Data (BigData Congress), 166–173. https://doi.org/10.1109/BigDataCongress.2018.00029

Tribuana, D., Angreini, A., Hutagalung, C. A., Sumah, J., & M, Y. A. (2025). Teknologi Big Data. Serasi Media Teknologi. https://books.google.co.id/books?id=DCR4EQAAQBAJ

Tribuana, D., Maramis, L., Usman, Resky, A. M., & Hidayat, R. (2025). Deep Learning. Serasi Media Teknologi. https://play.google.com/store/books/details/Dhimas_Tribuana_Deep_Learning?id=qB5pEQAAQBAJ

Tribuana, D., Usman, U., & Dayanti, D. (2025). Penerapan Natural Language Processing Untuk Analisis Sentimen Terhadap Layanan Publik Di Media Sosial Twitter. Jurnal Teknologi Dan Bisnis Cerdas, 1(1), 28–37. https://doi.org/10.64476/jtbc.v1i1.3

Trieu, V.-H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111–124. https://doi.org/10.1016/j.dss.2016.09.019

van Dongen, G., & Van den Poel, D. (2020). Evaluation of Stream Processing Frameworks. IEEE Transactions on Parallel and Distributed Systems, 31(8), 1845–1858. https://doi.org/10.1109/TPDS.2020.2978480

Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2016). Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics and Informatics, 33(3), 793–807. https://doi.org/10.1016/j.tele.2015.12.005

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009

Wixom, B., & Watson, H. (2010). The BI-Based Organization. International Journal of Business Intelligence Research, 1(1), 13–28. https://doi.org/10.4018/jbir.2010071702

Zulham, Safarudin, M. S., Usman, Tribuana, D., Friansa, K., Zebua, A., Utomo, M. N. Y., & Indahsari, A. N. (2025). Business Intelligence. Serasi Media Teknologi. https://play.google.com/store/books/details/Zulham_Business_Intelligence?id=9Z9qEQAAQBAJ

Unduhan

Diterbitkan

2025-09-13

Cara Mengutip

Tribuana, D., Dewi Haryanti Agustan, A., Hidayat, Halimah, E., Dianah, K., & Isiswanty. (2025). Membangun Taxonomy Riset Big Data Analytics dan Business Intelligence: Systematic Literature Review dalam Konteks Manajemen Informatika. Jurnal Teknologi Dan Bisnis Cerdas, 1(2), 140–154. https://doi.org/10.64476/jtbc.v1i2.12