Membangun Taxonomy Riset Big Data Analytics dan Business Intelligence: Systematic Literature Review dalam Konteks Manajemen Informatika
DOI:
https://doi.org/10.64476/jtbc.v1i2.12Kata Kunci:
Business Intelligence, Big Data Analytics, Data Governance, Real-Time Processing, Artificial Intelligence, Generative AI, TaxonomyAbstrak
Transformasi digital telah mendorong peran Business Intelligence (BI) berkembang dari sekadar sistem pelaporan menjadi platform strategis berbasis data. Penelitian ini bertujuan untuk memetakan state of the art BI melalui pendekatan Systematic Literature Review (SLR) dengan kerangka PRISMA 2020. Sebanyak 50 artikel ilmiah dari tahun 2010-2025 dikaji secara mendalam, dengan sumber dari basis data akademik terbuka dan standar (Scopus, Web of Science, Google Scholar, Semantic Scholar, dan DOAJ). Analisis menghasilkan sebuah taxonomy yang membagi literatur ke dalam lima domain utama: BI Foundations, Big Data Analytics, Data Governance & Quality, Real-Time & Stream Processing, dan BI-AI Integration. Hasil penelitian menunjukkan bahwa perkembangan BI mengikuti pola evolusi bertahap, mulai dari penguatan fondasi konseptual, pengembangan kapabilitas analitik, penguatan tata kelola data, akselerasi pemrosesan real-time, hingga integrasi dengan Artificial Intelligence (AI) dan Generative AI (GenAI). Studi ini memiliki implikasi teoretis berupa kontribusi terhadap kerangka konseptual riset BI, implikasi praktis berupa panduan strategi adopsi teknologi BI-AI di organisasi, serta implikasi kebijakan berupa kebutuhan regulasi adaptif dalam tata kelola data dan etika AI. Keterbatasan penelitian ini mencakup keterbatasan periode literatur dan dominasi artikel akademik. Penelitian mendatang disarankan mengintegrasikan grey literature dan studi kasus empiris untuk memperluas relevansi praktis.
Unduhan
Referensi
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
Adimi, A., Ghilan, M. M., & Yousef, W. (2024). Business Intelligence Systems Adoption: A Systematic Literature Review. Sana’a University Journal of Applied Sciences and Technology, 2(6), 527–537. https://doi.org/10.59628/jast.v2i6.1242
Akter, S., Bandara, R., Hani, U., Fosso Wamba, S., Foropon, C., & Papadopoulos, T. (2019). Analytics-based decision-making for service systems: A qualitative study and agenda for future research. International Journal of Information Management, 48, 85–95. https://doi.org/10.1016/j.ijinfomgt.2019.01.020
Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018
Al Ahmary, H. (2025). Integrating to Mitigate BI Adoption Barriers in SMEs: A Systematic Literature Review. AMCIS 2025 Proceedings. https://aisel.aisnet.org/amcis2025/sigadit/sigadit/30
Alghamdi, K. (2025). A Systematic Literature Review of Business Intelligence Theories and Frameworks. Journal of Information Systems Engineering and Management, 10(45s), 1077–1093. https://doi.org/10.52783/jisem.v10i45s.9136
Al-Momani, M. M., Alqudah, T. A., Al Swiety, I. A., Mahrakani, N., Nassoura, M. B. A., & Al Attar, M. K. (2025). Integrating Artificial Intelligence (AI) and Business Intelligence (BI): A Framework for Improving Enterprise Performance. TEM Journal. https://doi.org/10.18421/TEM143-26
Alpar, P., & Schulz, M. (2016). Self-Service Business Intelligence. Business & Information Systems Engineering, 58(2), 151–155. https://doi.org/10.1007/s12599-016-0424-6
Batini, C., & Scannapieco, M. (2016). Data and Information Quality. Springer International Publishing. https://doi.org/10.1007/978-3-319-24106-7
Belani, G. (2025). Big Data and Predictive Analytics: A Systematic Review of Applications. IEEE Computer Society. https://www.computer.org/publications/tech-news/research/big-data-predictive-analytics-review
Božič, K., & Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), 101578. https://doi.org/10.1016/j.jsis.2019.101578
Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, 14(0), 2. https://doi.org/10.5334/dsj-2015-002
Chatterjee, S., Chaudhuri, R., Gupta, S., Sivarajah, U., & Bag, S. (2023). Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm. Technological Forecasting and Social Change, 196, 122824. https://doi.org/10.1016/j.techfore.2023.122824
Chen, Chiang, & Storey. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165. https://doi.org/10.2307/41703503
da Costa, T. P., da Costa, D. M. B., & Murphy, F. (2024). A systematic review of real-time data monitoring and its potential application to support dynamic life cycle inventories. Environmental Impact Assessment Review, 105, 107416. https://doi.org/10.1016/j.eiar.2024.107416
Demirezen, M. U., & Navruz, T. S. (2023). Performance Analysis of Lambda Architecture-Based Big-Data Systems on Air/Ground Surveillance Application with ADS-B Data. Sensors, 23(17), 7580. https://doi.org/10.3390/s23177580
Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning. https://arxiv.org/abs/1702.08608
Duong, V. (2024). Big Data Analytics and Business Intelligence in Business Marketing: A Review. International Journal of Information Technology and Computer Science Applications, 2(3), 139–146. https://doi.org/10.58776/ijitcsa.v2i3.162
Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168
Ehrlinger, L., Rusz, E., & Wöß, W. (2019). A Survey of Data Quality Measurement and Monitoring Tools. https://arxiv.org/abs/1907.08138
Even, A., Shankaranarayanan, G., & Berger, P. D. (2010). Evaluating a model for cost-effective data quality management in a real-world CRM setting. Decision Support Systems, 50(1), 152–163. https://doi.org/10.1016/j.dss.2010.07.011
Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big data analytics capabilities and knowledge management: impact on firm performance. Management Decision, 57(8), 1923–1936. https://doi.org/10.1108/MD-07-2018-0825
Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos, A. (2024). A survey on the evolution of stream processing systems. The VLDB Journal, 33(2), 507–541. https://doi.org/10.1007/s00778-023-00819-8
Ghasemaghaei, M., & Calic, G. (2019). Does big data enhance firm innovation competency? The mediating role of data-driven insights. Journal of Business Research, 104, 69–84. https://doi.org/10.1016/j.jbusres.2019.07.006
Giebler, C., Stach, C., Schwarz, H., & Mitschang, B. (2018). BRAID - A Hybrid Processing Architecture for Big Data. Proceedings of the 7th International Conference on Data Science, Technology and Applications, 294–301. https://doi.org/10.5220/0006861802940301
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A Survey of Methods for Explaining Black Box Models. ACM Computing Surveys, 51(5), 1–42. https://doi.org/10.1145/3236009
Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
Huynh, M.-T., Nippa, M., & Aichner, T. (2023). Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research. Technological Forecasting and Social Change, 197, 122884. https://doi.org/10.1016/j.techfore.2023.122884
Ibrahimy, S. M., & Ibrahimy, A. I. (2023). The Impact of Big Data Analytics on Business Intelligence in E-Commerce: A Review. Asian Journal of Electrical and Electronic Engineering, 3(2), 45–48. https://doi.org/10.69955/ajoeee.2023.v3i2.54
Işık, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information & Management, 50(1), 13–23. https://doi.org/10.1016/j.im.2012.12.001
Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134
Kurat, J. (2024). Integrating Business Intelligence with Generative AI: Paving the Way for Ethical Decision-Making Solutions. https://doi.org/10.13140/RG.2.2.18018.44488
Lamba, K., Singh, S. P., & Mishra, N. (2019). Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in Big Data environment. Computers & Industrial Engineering, 128, 1052–1062. https://doi.org/10.1016/j.cie.2018.04.028
LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010). Big data, analytics and the path from insights to value. MIT Sloan Management Review. https://sloanreview.mit.edu/article/big-data-analytics-and-the-path-from-insights-to-value/
Liao, S.-H., Widowati, R., & Chang, H.-Y. (2021). A Data Mining Approach for Developing Online Streaming Recommendations. Applied Artificial Intelligence, 35(15), 2204–2227. https://doi.org/10.1080/08839514.2021.1997211
Liu, R., Yue, P., Shangguan, B., Gong, J., Xiang, L., & Lu, B. (2024). RTGDC: a real-time ingestion and processing approach in geospatial data cube for digital twin of earth. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2365386
Lundberg, S., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. https://arxiv.org/abs/1705.07874
Luo, L., Zhou, L., & Song, P. X.-K. (2023). Real-Time Regression Analysis of Streaming Clustered Data With Possible Abnormal Data Batches. Journal of the American Statistical Association, 118(543), 2029–2044. https://doi.org/10.1080/01621459.2022.2026778
Malawani, L., Sanguinoa, R., & Tato Jiménez, J. L. (2025). A Systematic Literature Review on the Impact of Business Intelligence on Organization Agility. Administrative Sciences, 15(7), 250. https://doi.org/10.3390/admsci15070250
Mariani, M. M., & Borghi, M. (2022). Artificial intelligence in service industries: customers’ assessment of service production and resilient service operations. International Journal of Production Research, 62(15), 5400–5416. https://doi.org/10.1080/00207543.2022.2160027
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004
Milinthapunya, W., Yamchuti, U., Nammakhunt, A., Shawarangkoon, C., Wannapiroon, P., & Nillsook, P. (2025). Business Intelligence Management with Artificial Intelligence for Prediction Information Technology Infrastructure in Higher Education. TEM Journal, 1378–1387. https://doi.org/10.18421/TEM142-38
Morabito, V. (2016). The Future of Digital Business Innovation. Springer International Publishing. https://doi.org/10.1007/978-3-319-26874-3
Naamane, Z. (2023). A SYSTEMATIC LITERATURE REVIEW: BENEFITS AND CHALLENGES OF CLOUD-BASED BIG DATA ANALYTICS. Issues In Information Systems, 24(11), 291–304. https://doi.org/10.48009/1_iis_2023_125
Nkamla Penka, J. B., Mahmoudi, S., & Debauche, O. (2021). A new Kappa Architecture for IoT Data Management in Smart Farming. Procedia Computer Science, 191, 17–24. https://doi.org/10.1016/j.procs.2021.07.006
Otto, B. (2012). How to design the master data architecture: Findings from a case study at Bosch. International Journal of Information Management, 32(4), 337–346. https://doi.org/10.1016/j.ijinfomgt.2011.11.018
Papadopoulos, T., Baltas, K. N., & Balta, M. E. (2020). The use of digital technologies by small and medium enterprises during COVID-19: Implications for theory and practice. International Journal of Information Management, 55, 102192. https://doi.org/10.1016/j.ijinfomgt.2020.102192
Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729–739. https://doi.org/10.1016/j.dss.2012.08.017
Raguseo, E. (2018). Big data technologies: An empirical investigation on their adoption, benefits and risks for companies. International Journal of Information Management, 38(1), 187–195. https://doi.org/10.1016/j.ijinfomgt.2017.07.008
Ravichandran, D., & Bick, M. (2025). Generative AI and Business Model Innovation in Banking. In ESCP Business School Research Paper. SSRN. https://doi.org/10.2139/ssrn.5185729
Salazar, A., & Kunc, M. (2025). The contribution of GenAI to business analytics. Journal of Business Analytics, 8(2), 79–92. https://doi.org/10.1080/2573234X.2024.2435835
Singh, N., Chaudhary, V., Singh, N., Soni, N., & Kapoor, A. (2024). Transforming Business with Generative AI: Research, Innovation, Market Deployment and Future Shifts in Business Models. https://arxiv.org/abs/2411.14437
Sivarajah, U., Kumar, S., Kumar, V., Chatterjee, S., & Li, J. (2024). A study on big data analytics and innovation: From technological and business cycle perspectives. Technological Forecasting and Social Change, 202, 123328. https://doi.org/10.1016/j.techfore.2024.123328
Sumah, J., Selsily, W. H., Tribuana, D., Maramis, L., Angreini, A., Resky, A. M., & Bulu, N. H. (2025). Cloud Computing. Serasi Media Teknologi. https://books.google.co.id/books?id=Hb9mEQAAQBAJ
Taleb, I., Serhani, M. A., & Dssouli, R. (2018). Big Data Quality: A Survey. 2018 IEEE International Congress on Big Data (BigData Congress), 166–173. https://doi.org/10.1109/BigDataCongress.2018.00029
Tribuana, D., Angreini, A., Hutagalung, C. A., Sumah, J., & M, Y. A. (2025). Teknologi Big Data. Serasi Media Teknologi. https://books.google.co.id/books?id=DCR4EQAAQBAJ
Tribuana, D., Maramis, L., Usman, Resky, A. M., & Hidayat, R. (2025). Deep Learning. Serasi Media Teknologi. https://play.google.com/store/books/details/Dhimas_Tribuana_Deep_Learning?id=qB5pEQAAQBAJ
Tribuana, D., Usman, U., & Dayanti, D. (2025). Penerapan Natural Language Processing Untuk Analisis Sentimen Terhadap Layanan Publik Di Media Sosial Twitter. Jurnal Teknologi Dan Bisnis Cerdas, 1(1), 28–37. https://doi.org/10.64476/jtbc.v1i1.3
Trieu, V.-H. (2017). Getting value from Business Intelligence systems: A review and research agenda. Decision Support Systems, 93, 111–124. https://doi.org/10.1016/j.dss.2016.09.019
van Dongen, G., & Van den Poel, D. (2020). Evaluation of Stream Processing Frameworks. IEEE Transactions on Parallel and Distributed Systems, 31(8), 1845–1858. https://doi.org/10.1109/TPDS.2020.2978480
Vera-Baquero, A., Colomo-Palacios, R., & Molloy, O. (2016). Real-time business activity monitoring and analysis of process performance on big-data domains. Telematics and Informatics, 33(3), 793–807. https://doi.org/10.1016/j.tele.2015.12.005
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009
Wixom, B., & Watson, H. (2010). The BI-Based Organization. International Journal of Business Intelligence Research, 1(1), 13–28. https://doi.org/10.4018/jbir.2010071702
Zulham, Safarudin, M. S., Usman, Tribuana, D., Friansa, K., Zebua, A., Utomo, M. N. Y., & Indahsari, A. N. (2025). Business Intelligence. Serasi Media Teknologi. https://play.google.com/store/books/details/Zulham_Business_Intelligence?id=9Z9qEQAAQBAJ
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Dhimas Tribuana, Andi Dewi Haryanti Agustan, Hidayat, Endang Halimah, Koas Dianah, Isiswanty

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Artikel ini diterbitkan di bawah Lisensi Creative Commons Attribution 4.0 International (CC BY 4.0).
Anda bebas menggunakan, membagikan, dan mengadaptasi karya ini selama mencantumkan atribusi yang sesuai kepada penulis dan sumber asli publikasi.
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/